TB2 Mathématiques

Programme de colle n°3

semaine du 29 septembre au 4 octobre 2025

Chapitre 3: Etude globale de fonctions

- Généralités sur les fonctions : Image d'un ensemble, antécédent, composition, parité, monotonie, monotonie des fonctions dérivables, majorant, minorant, extremums
- Fonctions injectives, surjectives, bijectives (Note pour les colleurs :pas trop d'exercices théoriques sur injection et surjection, plutôt se placer dans le cadre de bijections de fonctions réelles) Caractérisation des bijections et fonction réciproque; Théorème de la bijection continue.
- Théorème des valeurs intermédiaires et son corollaire.

Chapitre 4: séries numériques à termes positifs

- Définition et propriétés
 - Définition : série, somme partielle
 - Propriété : croissance de la suite des sommes partielles
 - Définition : série convergente, série divergente, somme d'une série
 - Condition nécessaire de convergence d'une série
 - Linéarité de la somme
 - Théorèmes de comparaison

• Séries de référence

- Séries de Riemann : divergence de $\sum \frac{1}{n}$ (série harmonique), convergence de $\sum \frac{1}{n^2}$
- CNS de convergence et somme des séries suivantes :

$$\sum_{k \ge 0} \frac{x^k}{k!}$$

$$\sum_{k\geq 0} q^k$$

$$\sum_{k\geq 0} k \, q^k$$

$$\sum_{k\geq 0} \frac{x^k}{k!} \qquad \sum_{k\geq 0} q^k \qquad \sum_{k\geq 0} k \, q^k \qquad \sum_{k\geq 0} k^2 \, q^k$$

TB2 Mathématiques

Exercices à savoir refaire:

E1 - Exercice 4 TD3

Déterminer le nombre exact de solutions de l'équation $8x^3 - 4x + 1 = 0$ et encadrer chacune des solutions entre deux entiers consécutifs.

E2 - Exercice 5 TD3

On considère la fonction $f: x \mapsto x^2 - x \ln(x) - 1$.

- 1. Donner le domaine de définition et celui de continuité de f.
- 2. Montrer que f réalise une bijection de \mathbb{R}^{+*} dans un ensemble que l'on précisera.

E3 - Exercice 6 TD 4

- 1. Montrer que pour tout $k \ge 2$: $\frac{1}{k^2} \le \frac{1}{k-1} \frac{1}{k}$.
- 2. En déduire que pour tout $n \ge 2$: $\sum_{k=2}^{n} \frac{1}{k^2} \le 1$.
- 3. Démontrer que la série de terme général $\frac{1}{n^2}$ converge.
- 4. En déduire la nature de la série $\sum \frac{n^3 5n + 6}{(n^2 6)^2 (n + 1)}.$

E4 - Exercice 8 TD 4

- 1. Montrer que pour tout $k \in \mathbb{N}^*$, $\int_k^{k+1} \frac{1}{x} dx \le \frac{1}{k}$.
- 2. En déduire que pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n \frac{1}{k} \ge \ln(n+1)$.
- 3. Démontrer que la série de terme général $\frac{1}{n}$ diverge.