Programme de colle n°1

semaine du 15 septembre au 20 septembre 2025

Chapitre 1 (partie 1): Fonctions de référence

• Connaissances essentielles en trigonométrie

- ▶ des valeurs remarquables des fonctions cosinus, sinus et même tangente!
- ▶ des formules trigonométriques (addition, duplication, « Pythagore »)

• Connaissances essentielles en analyse

- Fonctions puissances, exposant entier
- Fonction racine carrée
- Fonction valeur absolue
- Fonctions logarithme et exponentielle
- Fonctions puissances, exposant réel
- Fonctions trigonométriques

Chapitre 1 (partie 2) Limites et continuité

Limites

- Asymptotes parallèles aux axes
- Opérations algébriques sur les limites et composition
- Croissances comparées
- Limite en l'infini de fonctions polynômes et fonctions rationnelles
- Théorème de comparaison et de conservation de l'ordre par passage à la limite

Continuité

- Continuités en un point et sur un intervalle
- Opérations algébriques sur les fonctions continues
- Composition de fonctions continues

Chapitre 1 (Partie 3) : Dérivées, primitives et intégrales

Dérivées

- Fonction dérivable en un point
- Tangente en un point où la fonction est dérivable
- Continuité et dérivabilité
- Fonction dérivable sur un intervalle
- Fonction de classe C^1

- Opérations algébriques sur les fonctions dérivables
- Composition de fonctions dérivables
- Dérivée des fonctions de référence
- Dérivée de composées usuelles

• Primitives

- Définition
- Deux primitives diffèrent d'une constante
- Existence de primitives pour une fonction continue sur un intervalle
- Primitives usuelles et de composées usuelles

• Intégration sur un segment

- Définition, interprétation (aire *algébrique* sous la courbe)
- Propriétés : échange des bornes, intégrale d'une fonction constante, relation de Chasles, linéarité
- Propriétés utilisant l'ordre : positivité, croissance
- Théorème d'intégration par parties
- Théorème de changement de variable (strictement monotone)
- Théorème (intégrale fonction de sa borne supérieure) : Si f est une fonction continue sur I et soit a ∈ I, alors l'application F définie sur I par F(x) = ∫_a^x f(t) dt est dérivable sur I de dérivée F' = f.

Chapitre 2 : suites de nombres réels

• Généralités sur les suites

Définition d'une suite (explicitement/par une relation de récurrence)

- Suite croissante/décroissante/monotone
- Suite majorée/minorée/bornée

• Suites arithmétiques

- Définition
- Expression du terme général
- Somme de termes consécutifs

• Suites géométriques

- Définition
- Expression du terme général
- Somme de termes consécutifs

· Autres sommes à connaître

- Somme des k
- Somme des k^2

Limites

Suite convergente/divergente

- Limite de q^n
- Opérations sur les limites : somme, produit, inverse, quotient
- Théorèmes de comparaison
- Théorèmes de conservation de l'ordre par passage à la limite
- Théorème de la limite monotone

Suites adjacentes

- Définition
- Théorème

• Suites équivalentes

• Définition

Questions de cours

- Q1 Des questions de trigonométrie
- Q2 Des questions sur les fonctions de référence.
- Q3 Des questions sur des dérivées et des primitives.

Exercices à savoir refaire:

E1 - On note f la fonction définie sur $[0, +\infty[$ par :

$$\begin{cases} f(x) = x^2 - x \ln(x) - 1 & \text{si } x > 0 \\ f(0) = -1 \end{cases}$$

Étudier la continuité de f en 0.

E2 - On note g la fonction définie sur $[0, +\infty[$ par :

$$\begin{cases} g(x) = x^x & \text{si } x > 0 \\ g(0) = 0 \end{cases}$$

Étudier la continuité de g en 0.

E3 - À l'aide d'une intégration par parties, calculer $A = \int_0^1 t e^{-2t} dt$

E4 - À l'aide du changement de variable indiqué, calculer : $C = \int_0^1 \frac{1 - e^t}{e^{2t}} dt$ en posant $x = e^t$

E5 - On considère la fonction f définie sur $\mathbb{R}\setminus\{-1\}$ par :

$$f(x) = \frac{2x+1}{x+1}$$

et la suite (u_n) définie sur \mathbb{N} par :

$$\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, u_{n+1} = f(u_n) \end{cases}$$

- 1. Dresser le tableau de variation de f.
- 2. Montrer que pour tout $n \in \mathbb{N}$, u_n est bien défini et est supérieur ou égal à 0 .
- 3. Étudier la monotonie de la suite (u_n) .
- 4. Montrer que (u_n) converge et déterminer sa limite.