TB2 Mathématiques

Programme de colle n°6

semaine du 3 au 8 novembre 2025

Variables aléatoires discrètes

• Variable aléatoire discrète

- Définition de variable aléatoire discrète finie ou infinie (le programme de TB se restreint au cas où X est à valeurs dans \mathbb{N})
- Définition de la loi de probabilité d'une variable aléatoire discrète
- Système complet d'événements associé à une variable aléatoire discrète

Espérance

- Définition de l'espérance
- Interprétation fréquentiste de l'espérance
- Propriétés :
- ► Espérance d'une variable aléatoire constante
- ► Positivité de l'espérance
- ► Linéarité de l'espérance
- Théorème de transfert :
 - ▶ sous sa forme générale : au programme désormais !!!
 - \blacktriangleright dans le cas particulier du calcul de $E[X^2]$: incontournable!

• Variance et écart-type

- Définition de la variance
- Définition de l'écart-type
- Interprétation de la variance.
- Variance de aX et de X + b
- Formule de Kônig-Huygens

Fonction de répartition

- Définition de la fonction de répartition
- Propriétés de la fonction de répartition (variations, limites, continuité par morceaux)
- Lien entre loi et fonction de répartition.

Lois usuelles discrètes

- Loi certaine, espérance et variance.
- Loi uniforme sur [1, n], espérance et variance.
- Loi de Bernoulli, espérance et variance.
- Loi binomiale, espérance et variance.
- Loi géométrique, espérance et variance.
- Loi de Poisson, espérance et variance.

TB2 Mathématiques

Questions de cours

En début de colle, chaque élève devra donner avec précision deux lois usuelles choisies par l'interrogateur et les définir complètement ainsi que donner l'espérance et la variance.

Exercices à savoir refaire:

E1 - Soit a un nombre réel.

On considère une variable aléatoire X prenant toutes les valeurs de \mathbb{N} et telle que pour tout $n \in \mathbb{N}$, on ait :

$$P(X=n) = a\frac{4^n}{n!}$$

- 1. Déterminer la valeur de *a*.
- 2. Montrer que X admet une espérance et la calculer.
- 3. Pour $t \in \mathbb{R}$, montrer que t^X admet une espérance et la calculer.

E2 - Exercice 3 TD 5

Une urne contient des boules blanches et des boules noires.

On note p la probabilité de tirer une boule noire et q la probabilité de tirer une boule blanche. On tire au hasard des boules une par une avec remise jusqu'à ce que l'on obtienne une boule noire.

Pour tout $k \in \mathbb{N}^*$, on définit les événements suivants :

- N_k : "on obtient une boule noire au $k^{
 m ème}$ tirage"
- B_k : "on obtient une boule blanche au $k^{\text{ème}}$ tirage"

On note X la variable aléatoire discrète égale nombre de boules blanches obtenues.

- 1. Déterminer la loi de *X*.
- 2. Vérifier que la somme des P(X = n) est égale à 1 .
- 3. Calculer E(X) si elle existe. 4. Calculer V(X) si elle existe.
- E3 Soit n un entier naturel non nul. On considère une variable aléatoire X prenant les valeurs $k \in \{1, 2, ..., n\}$.

On note F sa fonction de répartition, on donne $F(k) = \left(\frac{k}{n}\right)^2$ pour tout $k \in \{1, 2, ..., n\}$.

1. Dans cette question, on suppose que n = 3.

Représenter graphiquement F, donner la loi de X, vérifier que P(X=1) + P(X=2) + P(X=3) = 1, puis calculer l'espérance de X.

- 2. Dans le cas général : déterminer la loi de X, vérifier que $\sum_{k=1}^{n} P(X=k) = 1$, calculer l'espérance de X et vérifier la validité de ce résultat pour n=3.
- E4 Soit $p \in (0, 1)$.

On considère X une variable aléatoire discrète de loi géométrique de paramètre p.

- (a) Calculer la probabilité que *X* prenne une valeur impaire, en déduire la probabilité que *X* prenne une valeur paire.
- (b) On note F la fonction de répartition de X. Calculer, pour tout $n \in \mathbb{N}^*$, la valeur de F(n). En déduire la probabilité P(X > n).